
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{hahnml, breitenbuecher, leymann, yussupov}@iaas.uni-stuttgart.de

Transparent Execution of Data Transformations
in Data-Aware Service Choreographies

Michael Hahn, Uwe Breitenbücher, Frank Leymann, Vladimir Yussupov

@InProceedings{Hahn2018_TraDEDataTransformationExecution,
 author = {Hahn, Michael and Breitenb{\"u}cher, Uwe and Leymann, Frank and
 Yussupov, Vladimir},
 title = {{Transparent Execution of Data Transformations in Data-Aware
 Service Choreographies}},
 booktitle = {On the Move to Meaningful Internet Systems.
 OTM 2018 Conferences},
 publisher = {Springer International Publishing AG},
 address = {Cham},
 series = {Lecture Notes in Computer Science},
 volume = {11230},
 pages = {117--137},
 year = {2018},
 isbn = {978-3-030-02671-4},
 doi = {10.1007/978-3-030-02671-4_7}
}

:

Institute of Architecture of Application Systems

© 2018 Springer International Publishing AG.
The original publication is available at https://doi.org/10.1007/978-3-030-
02671-4_7 and on Springer Link: https://link.springer.com/.

https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://doi.org/10.1007/978-3-030-02671-4_7
https://link.springer.com/
https://link.springer.com/
https://link.springer.com/
https://link.springer.com/
https://link.springer.com/
https://link.springer.com/
https://link.springer.com/

Transparent Execution of Data Transformations
in Data-Aware Service Choreographies

Michael Hahn, Uwe Breitenbücher,
Frank Leymann, and Vladimir Yussupov

Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Abstract. Due to recent advances in data science, IoT, and Big Data,
the importance of data is steadily increasing in the domain of business
process management. Service choreographies provide means to model
complex conversations between collaborating parties from a global view-
point. However, the involved parties often rely on their own data formats.
To still enable the interaction between them within choreographies, the
underlying business data has to be transformed between the different data
formats. The state-of-the-art in modeling such data transformations as ad-
ditional tasks in choreography models is error-prone, time consuming and
pollutes the models with functionality that is not relevant from a business
perspective but technically required. As a first step to tackle these issues,
we introduced in previous works a data transformation modeling exten-
sion for defining data transformations on the level of choreography models
independent of their control flow as well as concrete technologies or tools.
However, this modeling extension is not executable yet. Therefore, this pa-
per presents an approach and a supporting integration middleware which
enable to provide and execute data transformation implementations based
on various technologies or tools in a generic and technology-independent
manner to realize an end-to-end support for modeling and execution of
data transformations in service choreographies.

Keywords: Data-aware Choreographies · Data Transformation · TraDE

1 Introduction

With recent advances in data science the importance of data is increasing also
in the domain of Business Process Management (BPM) [14, 17]. The concept
of Service-Oriented Architectures (SOA), i. e., composing units of functionality
as services over the network, has found application in many research areas
and application domains besides BPM [4, 24], e. g., in Cloud Computing, the
Internet of Things, or eScience. The composition of services can be realized in
either an orchestration or choreography-based manner. Service orchestrations,
or processes/workflows, are defined from the viewpoint of one party that acts
as a central coordinator [13]. Service choreographies are defined from a global

viewpoint with focus on the collaboration between multiple interacting parties,
i. e., services, and their conversations without relying on a central coordinator [6].
Services taking part in such collaborations are represented as participants of a
choreography and their conversations are defined through message exchanges.

Participants rely on their own internal data models on which their business
logic is defined. Consequently, differences between the data formats of different
participants have to be resolved to enable their interaction and definition of
conversations between them. Therefore, data transformations have to be intro-
duced to translate the underlying data to the different formats each participant
requires. Such data transformations have to be defined within the participants of
a choreography model, i. e., as part of their control flow, e. g., by adding corre-
sponding transformation tasks that provide the required transformation logic.
This approach is inflexible, time consuming and also pollutes the participants’
control flow of choreography models with data transformation functionality that
is not relevant from the perspective of individual participants but technically
required to realize the conversations between them within a service choreography.

In Hahn et al. [10], we presented a first step to tackle these issues by introduc-
ing a modeling extension for defining data transformations in choreography models
independently of participants control flow directly between the defined choreog-
raphy data based on our concepts for Transparent Data Exchange (TraDE) [8].
However, execution support for the data transformations specified within a
choreography model is missing, i. e., the actual implementations of defined data
transformations need to be completely manually integrated into the execution
environment to enable their automated execution during choreography run time.
Although, this significantly eased the modeling of service choreographies with
participants relying on different data formats, concepts for the automated integra-
tion and execution of modeled data transformations decoupled from participants’
control flow are required to avoid error-prone and cumbersome manual integration
steps which require significant technical expertise for integrating the required
transformation software to a choreography execution environment.

In this paper, we tackle these issues by introducing concepts and a generic,
technology-independent integration middleware which enable to provide, inte-
grate and invoke data transformation implementations in an easy and automated
manner to realize an end-to-end support for modeling and execution of data
transformations in service choreographies. The contributions of this paper can be
summarized as follows: (i) concepts for the specification and packaging of data
transformation implementations, (ii) an architecture of a supporting integration
middleware which enables the automatic integration of packaged transformation
implementations into a choreography execution environment, (iii) concepts for the
execution of data transformations in service choreographies decoupled from partic-
ipants control flow in an automated and transparent manner based on our TraDE
concepts, and (iv) the prototypical implementation of an integrated ecosystem
for data-aware service choreographies with data transformation support.

The rest of this paper is structured as follows. Section 2 presents the prob-
lem statement of this work and introduces previous works on TraDE and our

modeling extension for data transformations. In Sect. 3, the TraDE Data Trans-
formation (TDT) approach is introduced. Section 4 presents how modeled data
transformations can be executed in an automated and transparent manner, i. e.,
decoupled from the choreography control flow. The prototypical implementation
of an integrated TraDE ecosystem is outlined in Sect. 5. Section 6 presents a case
study from the eScience domain as an example for applying the TDT approach
to an existing choreography model. Finally, the paper discusses related work
(Sect. 7) and concludes with our findings and future work (Sect. 8).

2 Problem Statement and Background

Commonly, participants in service choreographies rely on their own, custom data
formats. To enable the modeling of conversations among them, each participant
must understand all involved data formats. This can be achieved by translating
the data to the target formats required by individual participants. To define such
format translations on the level of service choreographies, data transformations
have to be specified as parts of the participants’ control flow. One solution is
to use a standardized choreography modeling language like BPMN [16], which
allows modeling data transformations as explicit tasks. However, this approach is
error-prone, time consuming and requires considerable amount of efforts. Firstly,
modelers have to provide transformation implementations required by the un-
derlying modeling language or execution environment, e. g., using XQuery or
XSLT for XML-related data transformations. This requires an extensive level of
expertise in transformation languages, technologies and underlying data modeling
languages and formats. Moreover, such transformations, when modeled as tasks in
possibly multiple participants, pollute the control flow of participants with data
transformation functionality that is not relevant from a participants perspective
but technically required to realize the communication between participants of a
choreography. In addition, since the underlying transformation implementations
become a part of the resulting choreography models, they are spread across
multiple different models which hinders their reuse and makes it hard to maintain
them. This is especially problematic when data formats of choreography par-
ticipants change over time, as underlying choreography models and all affected
transformation tasks have to be adapted to support these new data formats.
While providing transformation implementations as services eases the reuse pro-
cess, modelers must be able to wrap their transformation implementations as
services to invoke them in choreography models.

To provide the background for this work, we first compare the state-of-the-art
approach for data transformation modeling in choreographies and the TraDE
modeling extensions introduced in our previous works [8,10]. Figure 1 depicts an
example choreography modeled using these two approaches. Both choreographies
are illustrated as Business Process Management Notation (BPMN) [16] collabo-
ration models. The conversations among participants are defined using BPMN
message intermediate events and message flows. Choreography data is modeled

via BPMN data objects on the level of choreography participants and exchanged
as part of messages through specified message flows, e. g., mx1 in Fig. 1.

2.1 State-of-the-Art in Modeling Data Transformations

P1
P3

P2

P1

P3

P2

mx1 mx4

T1

D

E

F

E

H

G

DE F

mx2

A

mx3

H

B
H

T2
K

C

Message-based Data Exchange

Cross-Partner
Data Flow

Data Element

Cross-Partner
Data Object

Data Object
Message Start

Event
Message End

Event
Message

Receive Event
Message

Send Event
Data

Association
Task

Legend

Message
Flow

intermediate

K
F
G

A

B

C

input

D
E

output
H

dx3

dx2

dx1

dx4

TraDE Modeling Extensions

T1

T2

T
Data

Transformation

Fig. 1. Comparison of two modeling approaches, based on Hahn et al. [10].

The left model in Fig. 1 demonstrates the state-of-the-art approach for
data transformation modeling in choreographies. We call this standard way of
modeling and exchanging data in choreographies message-based data exchange [8].
Whenever participant P1 receives a request, modeled as BPMN message start
event, the contained data are extracted from the message and stored in data
objects D and E. These data is then wrapped and sent to participant P2 in
a message exchanged via message flow mx1. In a similar way, participant P3
receives these data via message flow mx2. At participant P3, data object E has to
be transformed and stored in data object G, which is used as an input for task B.
Therefore, participant P3 defines transformation task T1 that executes required
data transformation logic. The result of task B is stored in data object H and
sent back to participant P2 through message flow mx3. Similarly, transformation
task T2 is required for obtaining data object K which is used as input by task
C. Upon completion of all tasks, a message to the initial requester with data
object H is sent as the final result of the choreography execution.

This message-based data exchange approach has significant drawbacks [8, 10].
First, the same data objects must be specified at each participant that uses the
data, e. g., data objects E and H have to be specified in all participants. Moreover,
the data flow within a participant can be seamlessly modeled through BPMN data
associations, but data exchange across participants has to be modeled through a
combination of message flows and related control flow modeling elements, e. g.,

BPMN send and receive tasks, and message throw or message catch events.
Consequently, data cannot be exchanged across participants without introducing
additional control flow constructs at the sender and receiver participants.

In addition, required data transformations have to be modeled manually
through respective tasks and data associations on the level of choreography
participants. For example, participant P1 defines transformation task T2 for
translating the data produced by participant P2 (data element F). Such tasks pol-
lute the control flow of participants of choreography models with transformation
functionality by mixing business and technical aspects together. Moreover, the un-
derlying transformation implementations must be supported by the choreography
modeling language and execution environment, i. e., as the task’s implementation
or as an invokable service. This approach lacks automation support and depends
on the capabilities of the selected modeling language or execution environment.
Furthermore, it still requires a significant amount of expertise on transformation
languages, technologies and underlying data modeling languages and formats.

2.2 TraDE Data Transformation Modeling Extension

To improve and simplify the modeling of data transformations in service chore-
ographies, we presented concepts for the specification of data as well as its
exchange and transformation in service choreographies decoupled and indepen-
dent from participants control flow [8,10]. The choreography model depicted on
the right of Fig. 1 applies our TraDE concepts and modeling extensions, namely
cross-partner data objects, cross-partner data flows, and data transformations, to
substitute message-based data exchange and explicit definitions of transformation
tasks. Choreography data can be modeled in a participant-independent manner
using cross-partner data objects, e. g., input in Fig. 1, and the reading and writ-
ing of the cross-partner data objects from tasks and events is specified through
cross-partner data flows, e. g., dx1 or dx3. Explicitly modeled transformation
tasks T1 and T2 can be substituted by TraDE data transformations linked to the
data objects E and G (for T1) as well as F and K (for T2) through cross-partner
data flows. These cross-partner data flows allow exchanging the data across par-
ticipants independently of message flows and, therefore, decouple the exchange
of data from the exchange of messages. Moreover, the transformation of data can
be specified directly on the data itself, i. e., between cross-partner data objects,
instead of introducing transformation tasks on the level of participants.

Each cross-partner data object has a unique identifier and contains one or more
data elements. For example, cross-partner data object input in Fig. 1 contains
data elements D and E. A data element has a name and contains a reference to
a definition of its structure, e. g., a XML Schema Definition [20]. A TraDE data
transformation (DT) allows to specify a reference to the software that provides
the related data transformation logic, e. g., a web service, script, or executable,
referred to as DT Implementation in the following. The inputs and outputs of a
data transformation can be specified by adding cross-partner data flows between
a data transformation and one or more cross-partner data objects. If a data
transformation requires or produces several inputs or outputs, modelers are able

to map the connected cross-partner data objects to respective inputs and outputs
of the underlying DT Implementation through specifying a set of Input/Output
Mappings. Furthermore, a TraDE data transformation allows to specify a set
of Input Parameters which enables modelers to define input values for a DT
Implementation that are not provided through cross-partner data objects. For
example, to provide constant values, e. g., for the configuration or initialization of
the underlying DT Implementation. In addition, an optional Trigger Condition
and Activation Mode can be specified for each data transformation. A trigger
condition allows to specify a boolean expression which is evaluated before the
referenced DT Implementation is executed. The activation mode defines when a
data transformation should be conducted: on-read or on-write.

The binding of modeled data transformations to concrete logic is not required
during choreography modeling and can be deferred to choreography deployment.
The main idea is to enable a separation of concerns, i. e., participants’ business
logic and choreography transformation logic is separated from each other, which
introduces more flexibility since required transformations can be modeled within
choreographies in an abstract manner and their actual binding to concrete DT
Implementations can be done at a later point in time using the specified data
transformations within a choreography model and their properties as a blueprint
to identify or provide required DT Implementations. This allows modelers to
focus on the modeling of participants and their conversations without taking care
of how the differences of their data models can be solved.

As outlined in Hahn et al. [10], by supporting the definition of data transfor-
mations independent of choreography participants’ control flow directly between
cross-partner data objects, the main challenge is on how to provide, integrate and
invoke the underlying data transformation implementations for modeled data
transformations within service choreographies during choreography execution.

3 The TraDE Data Transformation Approach

In the following, the TraDE Data Transformation (TDT) approach is presented as
the main contribution of this work. It combines our TraDE modeling extensions,
an extended version of the TraDE Middleware [9], and introduces the new Data
Transformation (DT) Integration Middleware to provide automatic integration
and execution support for data transformations in service choreographies.

The presented TraDE data transformation modeling extension allows defining
data transformations independent of choreography participants (see Sect. 2.2).
However, to support the execution of respective data transformations, referenced
transformation implementations (DT Implementation) need to be integrated into
the choreography execution environment. In addition, data transformations are
often implemented in different programming languages or restricted to certain
execution environments. To tackle such heterogeneity, in Sect. 3.1 we first present
concepts for the technology-agnostic specification and packaging of DT Imple-
mentations in so-called DT Bundles. The goal is to abstract away any concrete
technologies or tools while automating tedious integration processes to avoid

manual wrapping of software. This allows modelers to easily create and provide
their data transformation implementations as DT Bundles.

These DT Bundles can then be published to the DT Integration Middleware to
make the contained DT Implementations available for use within choreographies.
The architecture of the DT Integration Middleware and how it supports the fully
automated provisioning and execution of DT Bundles is presented in Sect. 3.2.
Finally, in Sect. 4, an integrated TraDE ecosystem is presented and the transparent
execution of defined data transformations is described in more detail.

3.1 Specification and Packaging of DT Implementations

Based on the findings of related work discussed in Sect. 7 and lack of available
and suitable standards, we introduce our own conceptual model for an easy
and technology-agnostic specification and packaging of data transformation
implementations that fully satisfies our requirements. The resulting model can be
extended and adapted to support various required use cases and functionalities.

DT Unit

Input

+InputName: String
+Alias: String {unique}
+InputFormat: String
+InputSchema: String[0..1]
+isOptional: Boolean[0..1]

Description

+Name: String
+Version: String
+Publisher: String
+Description: String
+Developers: String[1..*]
+License: String
+Tags: String[0..*]

Output

+OutputName: String
+Alias: String {unique}
+OutputFormat: String
+OutputSchema: String[0..1]

Dependency

+DepName: String
+Alias: String {unique}
+Description: String

Transformation

+Name: String
+QName: String {unique}

1..*

1..*0..*

1..*

Invocation

+Name: String
+Description: String
+Command: String[1..*]

1..*

Configuration

+Name: String
+Command: String[1..*]

0..*

Fig. 2. A conceptual model for specifying DT Units.

The UML class diagram in Figure 2 illustrates our proposed conceptual model
for the specification of data transformation units (DT Units). In contrast to
the already introduced DT Bundle, a DT Unit provides a specification of one
or more DT Implementations, e. g., their inputs and outputs, required tools or
execution environments. A DT Bundle represents a concrete materialization
of a DT Unit by providing also the required concrete resources, e. g., data
transformation implementations in form of executables or scripts, configuration
files or installation scripts to setup required tools or frameworks for executing
respective transformations. Since DT Implementations can vary in different
dimensions, a black-box approach is employed for their specification and execution,
i. e., considering DT Implementations as atomic reusable entities which have to
remain immutable. Apart from general information such as name, version, or

publisher specified as Description entity, a DT Unit has several more important
characteristics. First, a DT Unit supports one or more transformations, e. g.,
transforming textual data into several different image formats. This definition
is provided in Transformation entities representing DT Implementations. A
Transformation has a name and an unique fully-qualified name (QName) which
can be used, e. g., for searching transformations at the middleware or to reference
them as transformation implementations in TraDE data transformations within
choreography models. Each transformation is described by one or more inputs and
outputs specified through Input and Output entities. Both entities have a name
and must be uniquely identifiable by an alias, which can be used for referencing,
e. g., to specify the invocation of a transformation of a DT Unit. Possible types of
inputs or outputs can be messages, data streams, files, parameters, or data from
databases. The inputs and outputs of a transformation might have a specific
format and can therefore provide a schema file describing their data format.

DT Units can have a particular set of dependencies that have to be satisfied
to execute their transformations. For example, a DT Unit can depend on certain
software, libraries, (configuration) files or even operating system (OS) environment
variables. Therefore, a proper specification of dependencies is needed. Such
dependencies, represented as Dependency entities in Fig. 2, have to be provided
or installed in some way, e. g., using an OS-level package manager’s command
or using a set of materialized files and related installation commands. Moreover,
the execution of preparation steps or other logic before invoking a DT Unit can
be a prerequisite for running a transformation. Hence, a specification of required
configurations in form of Configuration entities can be provided. Finally, every
DT Unit must specify how to invoke its provided transformations represented
through Invocation entities. For example, their transformations can be invoked
by sending a request to an API or executing a command via the command line
interface (CLI) of an OS. Such invocation command might need to reference
other model’s entities, e. g., inputs, by inserting their defined aliases.

To package described DT Units with their transformation implementations
and related files as DT Bundles based on the introduced conceptual model, a
standardized packaging format is required. Introducing a predefined structure
for packaging and storing DT Units is beneficial as no additional knowledge
is needed to process the DT Bundles later. A packaged DT Unit, i. e., a DT
Bundle, consists therefore of the following distinct parts: (i) unit part contains
all DT Unit-related files, e. g., DT Implementation artifacts such as scripts or
executables, (ii) dependencies part groups all required dependencies, (iii) schemas
part contains optional schema files which define the structure of transformation
inputs and outputs, (iv) DT Unit specification is an instance of the conceptual
model for a concrete DT Unit materialized as a file, e. g., as JSON file.

3.2 Architecture of the DT Integration Middleware

Figure 3 presents the architecture of the DT Integration Middleware which
allows modelers to publish DT Bundles to make their data transformation imple-
mentations available for use within choreographies. To allow a broad variety of

Presentation
REST APIWeb UI

Resources

Business Logic

DT Bundle
Deployer Task Invoker

Task I/O Handler

Task Monitor

DT Bundle
Manager

Search

DT BundlesDT MetadataProvisioning Layer

Fig. 3. Architecture of the DT Integration Middleware.

potential implementations, the architecture is defined in a generic and technology-
independent manner. Our focus is on the description of the logical building blocks
and functionality which can be then combined with or implemented through well-
established middleware solutions, e. g., such as Enterprise Service Buses (ESB) [5]
know for their integration and transformation capabilities in the context of SOA.

In the following, the architecture will be presented in a top-down manner
followed by a more detailed description of its business logic components. The
Presentation layer enables the communication of external clients with the middle-
ware, e. g., through a Web UI or REST API. The Business Logic layer provides
the core functionality of the middleware. Its components are responsible for the
publishing, provisioning, and the execution of transformation implementations
provided by DT Bundles in a task-based manner. The Resources layer provides
and integrates actual technologies for storing and provisioning of DT Bundles to
enable the execution of their contained transformation implementations. This
comprises the storage of the actual files of a DT Bundle (see Sect. 3.1) in the file
system (DT Bundles in Fig. 3). The related metadata of all managed DT Units
and DT Bundles is persisted in a database (DT Metadata in Fig. 3) to simplify
access and provide query support on the metadata. To support the provisioning
of published DT Bundles as a prerequisite for their execution, the middleware
relies on a Provisioning Layer, e. g., Docker or OpenTOSCA [3], to provide the
specified run time environment and dependencies of a DT Bundle.

To make a published DT Bundle and its provided DT Implementations
invokable, it has to be prepared for provisioning first. Since the specification of
a DT Unit might contain references to remote resources, e. g., files or software
dependencies, these references need to be materialized to preserve the state
and behavior of the DT Bundle within the middleware, as referenced files can
change over time leading to different bundle versions. For example, if a certain
dependency is specified, exactly the specified version has to be present for a

DT Bundle within the middleware. If materialization happens, the DT Unit
specification has to reflect the changes affecting materialized references. Finally,
a published DT Bundle needs to be stored, e. g., using a database, a file system,
or a combination of both. The DT Bundle Manager shown in Fig. 3 provides the
functionality for reference materialization, transforming DT Unit specifications
of DT Bundles into provisioning-ready specifications and manages the storage of
the resulting refined bundles and their metadata within the Resources layer. Such
provisioning-ready specification can be provided in form of, e. g., a Dockerfile or
a TOSCA [15] topology. The Search component allows to search and identify
suitable transformations of available DT Bundles based on user requests utilizing
the metadata provided through the available DT Unit specifications. Search
can employ various techniques from trivial unique name search to composition
of multiple transformations together to produce a desired output from the
provided input. The DT Bundle Deployer is responsible for deploying DT Bundles
to the supported provisioning layer. Therefore, it uses the provisioning-ready
specifications generated by the DT Bundle Manager and deploys them to the
selected Provisioning Layer. The choice of provisioning technology is not restricted
by the architecture, however, the middleware relies on a default provisioning
specification leaving the possibility to generate other specification types up to
pluggable components and the user’s choice. For example, a Dockerfile can be
generated if Docker is the default provisioning specification type. As potentially
multiple provisioning layers can be used together, the DT Bundle Deployer has
to update the metadata of a DT Bundle, e. g., stored in a database, to reflect its
deployment status at the Provision Layer, i. e., if it is available for executing its
contained transformation implementations.

Another important part of the middleware is the task-based execution of
transformations, i. e., the execution of a transformation implementation of a DT
Bundle. Therefore, a new transformation task can be issued by sending a request
to the REST API of the middleware. Such a request contains a reference to a
DT Bundle, the fully-qualified name of a Transformation of the specified DT
Bundle as well as required information about retrieving input and placing output
data according to the DT Unit specification of the DT Bundle (see Sect. 3.1).
The Task I/O Handler is responsible for preparing the specified inputs as a
prerequisite to invoke a transformation as well as processing the resulting outputs.
Therefore, inputs can be received in a pull or push-based manner. In the former
case, inputs are provided as references within transformation task requests and
need to be downloaded and prepared for the invocation. In the latter case, inputs
are contained in the request itself. The actual invocation and execution of the
specified transformation is managed by the Task Invoker. Therefore, it uses the
prepared inputs to invoke the transformation based on the DT Unit specification
(Invocation in Sect. 3.1). During the execution of the transformation, the Task
Monitor component allows to monitor the state of the execution by sending
corresponding requests to the REST API of the middleware. As soon as the
transformation is completed, the Task I/O Handler component is responsible to
process the resulting outputs and pass them back to the requester.

Since the DT Integration Middleware has to support various types of inputs
and outputs (e. g., files, messages, or data streams), invocation mechanisms
(e. g., CLI or HTTP), and monitoring concepts for different data transformation
types, the middleware supports integration of several implementations of these
three components in a pluggable manner. To automate the execution of data
transformations in choreographies, the middleware is integrated with the TraDE
Middleware as discussed in the following.

4 Transparent Execution of Data Transformations

Applying the TraDE Data Transformation (TDT) approach allows to specify and
provide data transformation implementations as DT Bundles and execute them
with the help of the DT Integration Middleware in a generic task-based manner.
What is still missing is how DT Bundles can be used within choreographies to de-
fine data transformations and how the execution of a DT Bundle’s transformation
can be triggered during choreography execution. Therefore, Sect. 4.1 presents the
integrated TraDE ecosystem and Sect. 4.2 outlines the execution of DT Bundle
transformations through the TraDE Middleware in a transparent manner, i. e.,
independent of the choreography control flow during choreography run time.

4.1 Integrated TraDE Ecosystem

Data-aware Choreography & Orchestration
Modeling Environment

Choreography Model

P1

P2

P n

DT Integration
Middleware

REST API

Cross-partner
Data Object

Deployment

Data Flow

Message Flow

Legend

Process Model Pn

Process Model P2
Process Model P1

...

...

TraDE
Middleware

DT Integration
Middleware Client

REST API

Process
Engine B

TraDE
Client

Process
Engine A

TraDE
Client

Process
Engine X

TraDE
Client

Deployment
Descriptor

DT Bundles Private Process
Bundles P1,…, Pn

Fig. 4. Integrated system architecture and deployment artifacts of the TraDE ecosystem.

Figure 4 depicts the TraDE ecosystem which provides an end-to-end support
for data transformations in service choreographies. Before we describe the execu-
tion of data transformations within the ecosystem, first the ecosystem itself is
introduced and the resulting deployment artifacts of a data-aware choreography
as well as their deployment to the components of the ecosystem are described.

As described in Sect. 3.1, data transformations are provided in form of DT
Bundles which comprise one or more data transformation implementations and a
DT Unit specification. They are published to the DT Integration Middleware to
make them available to the overall TraDE ecosystem. As outlined in Sect. 2.2, the
introduced TraDE data transformation modeling extension [10] allows to specify
a reference to the software that provides the underlying data transformation
implementation. By following the TDT approach, such references to transfor-
mation software, i. e., transformation implementations can now be provided and
integrated to choreography models by referencing corresponding DT Bundles
with their fully-qualified name (QName) (see Sect. 3.1). This allows the TraDE
Middleware to trigger a new transformation task at the DT Integration Middle-
ware as means to conduct a modeled transformation by executing the referenced
transformation implementation of a corresponding DT Bundle.

The Data-aware Choreography & Orchestration Modeling Environment enables
modelers to specify data-aware service choreographies by modeling cross-partner
data objects, cross-partner data flows and data transformations. Based on the fact
that a lot of choreography modeling languages do not produce executable models,
we follow the established approach of transforming choreography models into a
collection of executable private process models which collectively implement the
overall choreography [7] as shown in Fig. 4. The resulting private process models
can then be manually refined by adding corresponding internal logic for each
participant. The private process models are packaged together with related files,
e. g., process engine deployment descriptors, or interface and schema definitions,
as Private Process Bundles for their deployment on Process Engines as depicted
in Fig. 4. Furthermore, all cross-partner data objects and their dependencies
defined in a choreography model are exported to a TraDE Deployment Descriptor
file. This file is uploaded to the TraDE Middleware where it is compiled into
related internal representations to provide and expose all cross-partner data
objects as resources through the middleware’s REST API [9] as well as support
the triggering of data transformations. Thus, the TraDE Deployment Descriptor
contains information about all specified data transformations of a choreography.
As introduced in Sect. 2.2, this comprises the reference to a data transformation
implementation, Input/Output Mappings, Input Parameters, and an optional
Trigger Condition and Activation Mode. The reference to a transformation im-
plementation is specified by adding the fully-qualified name (QName) of a DT
Bundle’s transformation (see Sect. 3.1). This separation of concerns, i. e., partici-
pants’ business logic is specified in private process models and transformation logic
is specified/referenced in TraDE Deployment Descriptor, allows more flexibility
since transformations can be provided and specified as DT Bundles independent
of the choreography/private process models and therefore also be easily changed

without affecting the private process models. This allows modelers to focus on
the modeling of choreography participants and their conversations without taking
care of how the differences of their data models can be solved. The actual binding
of concrete transformation logic, i. e., transformation implementations being part
of a DT Bundle, can be delayed to choreography deployment since this binding
information is provided as part of the TraDE Deployment Descriptor and does not
require any changes on the level of the private process models of a choreography.

The TraDE Middleware is integrated with the DT Integration Middleware
as well as the respective process engines through clients. Therefore, the process
engines are extended with a TraDE Client to communicate with the TraDE Mid-
dleware through its REST API. The TraDE Middleware contains a DT Integration
Middleware Client to trigger the task-based execution of data transformations by
sending transformation task requests to the DT Integration Middleware’s REST
API. As shown in Fig. 4, this enables the TraDE Middleware to act as a data
hub between the private process models implementing choreography participants
and referenced DT Bundles, i. e., defined data transformations. In the following,
the execution of modeled data transformations within the ecosystem is described.

4.2 Automatic Triggering of Data Transformations

As outlined above, the TraDE Middleware comes with its own internal, chore-
ography language independent metamodel as presented in Hahn et al. [9]. The
middleware extracts all defined cross-partner data objects and data elements
from the TraDE Deployment Descriptor and translates them to respective Cross-
PartnerDataObject and DataElement entities according to its metamodel. To
represent the actual data of running choreography instances, i. e., collection of
instances of the private process models implementing the choreography model,
the metamodel defines further entities. For each choreography instance, Cross-
PartnerDataObjectInstance and DataElementInstance entities are created at
the middleware with associated CorrelationProperty entities which enable to
uniquely identify the choreography instance the data object and data element
instances belong. The actual data of a choreography instance is represented
through DataValue entities which are referenced by DataElementInstance enti-
ties. The TraDE Middleware provides an event model for each entity type, i. e.,
a life cycle with states and transitions. This allows firing an event whenever an
entity changes its state, e. g., a DataValue is initialized. Based on these event
models, the TraDE Middleware supports an event-based mechanism to trigger
actions on respective events. This concept is used to transparently execute data
transformations specified in choreography models by triggering the invocation
of referenced transformations provided as DT Bundles at the DT Integration
Middleware and handling the underlying data exchange.

For example, data transformation T1 in Fig. 1 will be triggered as soon as
data element E of cross-partner data object input is initialized or whenever
it is modified. The invocation of the respective DT Bundle’s transformation
itself is straightforward. All required information is sent to the DT Integration
Middleware within a request that triggers the task-based execution of a DT

Bundle’s transformation. This requires the resolution of DataValue entities for a
specific choreography instance that hold the input data of the transformation.
For the example depicted in Fig. 1, this means that the middleware has to first
identify the DataElementInstance entity of data element E related to the running
choreography instance. Next, the DataValue entity associated to the resulting
data element instance can be resolved to get the actual data to transform. Instead
of passing the input data within the invocation request to the DT Integration
Middleware, a URL pointing to the respective resource exposing the required
DataValue entity at the TraDE Middleware’s REST API is added for each
transformation input. The same applies for transformation outputs. Instead
of retrieving output data in a response message, a DataValue resource URL
is added to the invocation request for each transformation output. When the
transformation is completed, the DT Integration Middleware uploads all results
to the TraDE Middleware by pushing them to DataValue resources specified
through URLs in the invocation request, making the data available for further use.

By default, a transformation is triggered whenever data is written to a
DataValue associated to one of its input cross-partner data objects. The trigger
condition and activation mode allow influencing the underlying behavior of
the TraDE Middleware. In on-write activation mode, the TraDE Middleware
first waits until all input data for a data transformation is available, i. e., the
DataValue entities associated to cross-partner data objects specified as inputs
are successfully initialized, and then invokes the DT Bundle’s transformation.
Furthermore, whenever one or more of the specified transformation inputs are
modified, the TraDE Middleware invokes the DT Bundle’s transformation again.
Based on that, the specified outputs of a data transformation are always up-
to-date. In on-read activation mode, the TraDE Middleware triggers a data
transformation whenever one of its output cross-partner data objects or data
elements are read. For example, data transformation T1 in Fig. 1 will be triggered
whenever data element G of cross-partner data object intermediate is read. Since
reads and writes of cross-partner data objects are decoupled from choreography
execution, the TraDE Middleware has to wait until all the required input cross-
partner data objects are available before triggering the invocation of a DT
Bundle’s transformation. Further fine tuning of the data transformation triggering
behavior at the TraDE Middleware is possible through the specification of a
trigger condition. It allows to define a boolean expression that is evaluated by
the TraDE Middleware to check if a data transformation should be triggered or
not. For example, this can be used to trigger a transformation only if the value
of an input cross-partner data object is within certain margins.

5 Prototype

To prove the technical feasibility of our approach, we describe the prototypical
implementation of the TraDE ecosystem and its components in the following.
For the modeling of data-aware choreographies with data transformations, the
choreography modeling language BPEL4Chor [7] is used and extended. The

underlying Data-aware Choreography & Orchestration Modeling Environment
is built on existing tools, i. e., Chor Designer [21] and an extended version of
the Eclipse BPEL Designer. As Process Engine an extended version of the open
source BPEL engine Apache Orchestration Director Engine (ODE) is used. To
enable the execution of cross-partner data flows, the implementation of Apache
ODE is extended and integrated with the TraDE Middleware to enable the
reading and writing of cross-partner data objects [9].

The TraDE Middleware itself is implemented as a Java-based web application
which exposes its functionality through a REST API which is specified using
Swagger and implemented with the Jersey RESTful Web Services framework.
The TraDE internal representations and the actual data processed within the
choreographies, can be persisted using MongoDB or the local file system. To
support the event-based triggering of DT Bundles within the context of this work,
the TraDE Middleware is extended with corresponding functionality implemented
using Apache Camel to send requests to the REST API of the DT Integration
Middleware. The TraDE Middleware open source code is available on GitHub1.

The DT Integration Middleware is a web application implemented in Python
Flask with its functionality exposed via a REST API. Swagger is used for
the specification of the REST API. For storing DT Bundles a combination of
MongoDB and a file system is used. The former stores metadata derived from the
provided DT Unit specifications, whereas the latter is used for storing the files of
DT Bundles. The prototype supports file-based DT Implementations which rely
on files and parameters as input and output types and can be invoked through
CLI commands. To provision DT Bundles, Docker is used as provisioning layer
integrated to the middleware through a Docker SDK for Python. More complex
DT Implementations and DT Bundles requiring other invocation mechanisms as
well as input and output types will be supported using TOSCA [15] in future.
The DT Integration Middleware open source code is available on GitHub2.

6 Case Study

As an example for applying the TDT approach, a case study from the eScience
domain is presented in the following. Therefore, the näıve choreography model is
presented where data transformations are defined by adding respective transfor-
mation tasks. Finally, the TDT approach is applied to the model as an example
for easier modeling of data transformations and enabling their provisioning and
execution in a technology-independent and transparent manner.

6.1 Näıve Modeling of Data Transformations

Figure 5 shows an excerpt of the choreography model of a Kinetic Monte Carlo
(KMC) simulation using the custom-made simulation software Ostwald ripening

1 TraDE: https://github.com/traDE4chor/trade-core/releases/tag/v1.1.0
2 DT: https://github.com/traDE4chor/hdtapps-prototype/releases/tag/v1.0.0

https://github.com/traDE4chor/trade-core/releases/tag/v1.1.0
https://github.com/traDE4chor/hdtapps-prototype/releases/tag/v1.0.0

O
pa
lM

C

O
pa
lV
isu

al

O
pa
l

XY
ZR

O
pa
l

CL
U
S

Process
Snapshot

Transform
To Plot

Transform
To Video

Run
Opal MC

Simulation Visualize
Results

sim_results

video
plot

saturation

snapshots

allClusters

allPosSizesTransform
Input Files

sim_input

energy
params

lattice
opal_in

Fig. 5. Choreography conducting a thermal aging simulation from eScience [8].

of Precipitates on an Atomic Lattice (OPAL) [2]. OPAL simulates the formation
of copper precipitates, i. e., the development of atom clusters, within a lattice due
to thermal aging. The whole simulation consists of four major building blocks
which are reflected as participants of the data-aware choreography depicted
in Fig. 5. Following our TraDE concepts, all data relevant for the choreography
model is specified independently of any participant and in a shared and reusable
manner through cross-partner data objects (DO) and data elements (DE).

Whenever the OpalMC participant receives a new request, a new instance
of the KMC simulation is created. The initial request contains a set of inputs
(sim input DO), e. g., parameters such as the number of simulation snapshots
to take (params DE), an initial energy configuration (energy DE), and a lattice
(lattice DE). First, the Transform Input Files service task executes a data
transformation to combine input parameters and energy configuration into the
input format of the KMC simulation. The transformation result is stored in the
opal in DE. Next, the Run Opal MC Simulation service task invokes a service
which conducts the KMC simulation based on the provided data. According to
the specified number of snapshots in opal in DE, the service saves the current
state of the atom lattice at a particular point in time as a snapshot and replies all
snapshots together (snapshots DO) as well as saturation data (saturation DO).

Based on the number of snapshots, the Process Snapshots send task is con-
ducted multiple times to invoke the analysis of each snapshot individually at the
OpalCLUS and OpalXYZR participants. First, all clusters within each snapshot
are identified and stored in the allClusters DO through the OpalCLUS partici-
pant. This cluster information is then processed by the OpalXYZR participant
to identify the position and size of each cluster. The respective results are stored
in the allPosSize DO. Since the internal logic of the OpalCLUS and OpalXYZR
participants do not provide further insights, they are depicted as a black box.

The Visualize Results service task triggers the visualization of snapshot and
saturation data at the OpalVisual participant. The Transform To Video and
Transform To Plot service tasks invoke related transformation services using the
snapshots and saturation DO as input. The collection of snapshots is transformed
into a video of animated 3D scatter plots and the saturation data is transformed
to a 2D plot of the saturation function of the precipitation process as a final
result which are stored in the respective data elements of the sim results DO.

According to Sect. 2, the choreography model contains three transformation
tasks that are not a relevant part of the simulation but technically required for
pre-processing (sim input DO) and post-processing (sim results) of simulation
data. Moreover, the simulation specific transformation implementations have
to be manually wrapped as services to enable their integration and invocation
in the choreography. This requires expertise and additional effort since the
transformation implementations are provided as shell script (Transform Input
Files) or Python (Transform To Video) and Gnuplot scripts (Transform To Plot).

6.2 Applying the TraDE Data Transformation Approach

O
pa
lM

C

O
pa
l

XY
ZR

O
pa
l

CL
U
S

Process
Snapshot

Run
Opal MC

Simulation

saturation snapshots

sim_results

video
plot

t3

t2sim_input

energy
params

lattice
opal_in

t1

allClusters

allPosSizes

Fig. 6. Choreography model with TraDE data transformations applied.

Figure 6 depicts the OPAL choreography model with the introduced TDT
approach applied. The definition of data transformations between cross-partner
data objects allows to substitute the explicitly modeled transformations tasks:
Transform Input Files, Transform To Video and Transform To Plot. Instead,
TraDE data transformations t1, t2, t3 are defined to transform the choreography
data as required. This contributes to our goal of specifying data and its trans-
formations independent of any participants in service choreographies directly
between cross-partner data objects. Furthermore, the transformation implemen-
tations have no longer to be provided as services to enable their integration and
invocation through tasks (e. g., Transform Input Files). Modelers are now able
to specify and integrate their transformation implementations without manual
wrapping effort, in form of DT Bundles to enable their transparent execution

within the TraDE ecosystem. With the help of the TDT approach, the original
scripts can be automatically wrapped and integrated into the TraDE ecosystem
to enable their invocation. Only respective DT Unit specifications have to be
created for each of the scripts to enable their packaging together with related
files as DT Bundles and finally publish them to the DT Integration Middleware.
To get an idea how a concrete DT Bundle looks like, a corresponding example
for transformation t2 (Transform To Video) is available on GitHub3.

7 Related Work

Since the focus of this work is on how to specify, integrate and execute heteroge-
neous data transformation implementations in an easy and automated manner
in the context of data-aware service choreographies, this section presents related
work regarding application reuse and wrapping techniques.

Zdun [23] introduces an approach for legacy application migration to the
web. He describes a method with the following four steps: (i) providing an API
using either wrapping or redevelopment approaches, (ii) implementation of a
component responsible for mapping of requests to the legacy API, (iii) as well as
implementation of a component responsible for response generation, and (iv) the
integration of these components into a web server. Furthermore, a reference
architecture supporting the introduced concepts and issues is presented.

Sneed et al. [18] introduce white-box wrapper generation approaches for wrap-
ping functions in legacy applications based on XML descriptions. The presented
tool supports, e.g., the transformation of PL/I and COBOL functions’ into WSDL
interfaces. Additionally, the transformation generates modules responsible for
mediation of the input and output data between legacy and WSDL interfaces.

Afanasiev et al. [1] present a cloud platform called MathCloud which allows
reusing scientific applications by exposing them as RESTful web services having a
uniform interface for a task-based execution. Requests contain the task description,
inputs specification and resulting output is returned when the task is completed.
Sukhoroslov et al. [19] introduce Everest, a PaaS platform for reusing scientific
applications based on the MathCloud platform [1]. The authors further improve
the ideas of providing a uniform interface for task-based execution of applications.

Juhnke et al. [12] present the Legacy Code Description Language framework
which allows wrapping legacy code. An extensible legacy code specification model
is used as a basis for executable wrappers generation. The model stores the
information necessary for wrapping binary and source code legacy applications.

Wettinger et al. [22] present an APIfication approach which allows generating
API implementations for executable programs. The underlying assumption is that
an executable is provided along with metadata describing its dependencies, inputs,
outputs, and other required information. Additionally, the authors introduce
any2api as a generic and extensible framework for reusing executable software.

3 Opal snapshot-to-video transformation DT Bundle: https://github.com/traDE4chor/
hdtapps-prototype/tree/master/samples/opalVideo

https://github.com/traDE4chor/hdtapps-prototype/tree/master/samples/opalVideo
https://github.com/traDE4chor/hdtapps-prototype/tree/master/samples/opalVideo

Hosny et al. [11] introduce AlgoRun, a container template based on Docker
suitable for wrapping CLI-based scientific algorithms and exposing them via
a REST interface to simplify the reuse of scientific algorithms. Therefore, the
algorithm has to be described using a predefined format. Moreover, a Dockerfile
has to be created which wraps the algorithm’s source code.

While some of the works are used as a basis for the TDT approach, none
of them fit completely our needs. Since our focus is on data transformation
software, data-related aspects and capabilities of such application reuse and
wrapping techniques are of major relevance. The idea to create specifications for
legacy applications similar to ones introduced by Juhnke et al. [12] and Hosny et
al. [11] is used as an inspiration. However, we wanted to avoid any tight-coupling
with a particular type of infrastructure or provisioning technology, since various
provisioning specifications can be generated based on our introduced technology-
agnostic DT Bundle specification. Our goal is to provide generic concepts and
a supporting middleware for the specification, packaging, provisioning, and
invocation of data transformation implementations as DT Bundles to enable
their use within service choreographies.

8 Conclusion and Outlook

Data transformations are required on the level of choreographies to mediate
between the different data formats of their collaborating participants. To support
the execution of data transformations independent of choreography participants’
control flow, the TDT approach is introduced to provide and invoke the underlying
data transformation implementations for modeled data transformations within
service choreographies. The main goal of the approach is to avoid the potentially
tedious integration or even complete manual wrapping of required transformation
software for its use within choreographies. Therefore, concepts for the specification
and packaging of transformation implementations as DT Bundles and a supporting
DT Integration Middleware enabling their execution are introduced. The resulting
integrated TraDE ecosystem enables a seamless and transparent execution of
data transformations within choreographies. Finally, we presented a prototypical
implementation and a case study where we applied the TDT approach to an
existing choreography model from the domain of eScience to show its feasibility.

In future, we plan to extend transformation capabilities for both modeling
and execution of choreographies, e. g., by supporting the specification of trigger
conditions for fine-grained control of triggering data transformations. Furthermore,
an evaluation of the overall TraDE ecosystem is planned to compare and identify
its behavior based on different scenarios, e. g., measure performance variations
regarding the number of choreography participants and parallel reading/writing
as well as transformation of shared cross-partner data objects.

Acknowledgments This research was supported by the projects SmartOrchestra
(01MD16001F) and SePiA.Pro (01MD16013F).

References

1. Afanasiev, A., et al.: MathCloud: publication and reuse of scientific applications as
RESTful web services. In: PaCT (2013)

2. Binkele, P., Schmauder, S.: An atomistic Monte Carlo simulation of precipitation
in a binary system. Zeitschrift für Metallkunde (2003)

3. Binz, T., et al.: OpenTOSCA - A Runtime for TOSCA-based Cloud Applications.
In: ICSOC (2013)

4. Bouguettaya, A., et al.: A Service Computing Manifesto: The Next 10 Years.
Communications of the ACM (2017). https://doi.org/10.1145/2983528

5. Chappell, D.: Enterprise Service Bus. O’Reilly Media, Inc. (2004)
6. Decker, G., et al.: An Introduction to Service Choreographies. Information Tech-

nology (2008)
7. Decker, G., et al.: Interacting services: from specification to execution. Data &

Knowledge Engineering (2009)
8. Hahn, M., et al.: Modeling and Execution of Data-Aware Choreographies: An

Overview. Computer Science - Research and Development (2017)
9. Hahn, M., et al.: TraDE - A Transparent Data Exchange Middleware for Service

Choreographies. In: OTM Conferences (2017)
10. Hahn, M., et al.: Modeling Data Transformations in Data-Aware Service Chore-

ographies. In: EDOC (2018)
11. Hosny, A., et al.: AlgoRun: a Docker-based packaging system for platform-agnostic

implemented algorithms. Bioinformatics (2016)
12. Juhnke, E., et al.: LCDL: an extensible framework for wrapping legacy code. In:

iiWAS (2009)
13. Leymann, F., Roller, D.: Production Workflow - Concepts and Techniques. PTR

Prentice Hall (2000)
14. Meyer, S., et al.: Towards Modeling Real-world Aware Business Processes. In: WoT

(2011)
15. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)

Version 1.0 (2013)
16. OMG: Business Process Model And Notation (BPMN) Version 2.0 (Jan 2011)
17. Schmidt, R., et al.: Big Data as Strategic Enabler - Insights from Central European

Enterprises. In: Business Information Systems (2014)
18. Sneed, H.M.: Integrating legacy software into a service oriented architecture. In:

Software Maintenance and Reengineering (2006)
19. Sukhoroslov, O., Afanasiev, A.: Everest: A Cloud Platform for Computational Web

Services. In: CLOSER (2014)
20. W3C: XML Schema Definition Language (XSD) 1.1 Part 1: Structures (2012)
21. Weiß, A., et al.: Modeling Choreographies using the BPEL4Chor Designer. Technical

Report 2013/03, University of Stuttgart (2013)
22. Wettinger, J., et al.: Streamlining APIfication by Generating APIs for Diverse

Executables Using Any2API. In: CLOSER (2015)
23. Zdun, U.: Reengineering to the web: A reference architecture. In: Software Mainte-

nance and Reengineering (2002)
24. Zimmermann, O.: Microservices tenets. Computer Science - Research and Develop-

ment (2016)

All links were last followed on August 30, 2018.

https://doi.org/10.1145/2983528

